-
2021-06-24 읽을거리읽을거리 2021. 6. 24. 16:33
python
1. 간단하지만 유용한 pandas 사용 방법 3가지
https://towardsdatascience.com/3-pandas-functions-that-will-make-your-life-easier-4d0ce57775a1
3 Pandas Functions That Will Make Your Life Easier
A practical guide with worked through examples
towardsdatascience.com
2. 유용한 built-in 함수 10가지
https://medium.com/pythoneers/10-must-known-built-in-functions-in-python-2f196b9c0359
10 Must Known Built-In Functions in Python
Learn About The Biggest Power of Python
medium.com
3. python의 loop 문 잘 쓰는 방법
https://medium.com/techtofreedom/the-art-of-writing-loops-in-python-68e9869e4ed4
The Art of Writing Loops in Python
Simple is better than complex
medium.com
4. 잘 모르지만 알아두면 편한 python function
Python Features You Probably Don’t Know About, But Should
Some lesser-known but useful python features
levelup.gitconnected.com
UI/UX, prototyping
1. gradio
UI 컴포넌트를 간단하게 보여줄 수 있는 라이브러리
DL/ML 에 붙여서 사용하기 좋아보임
https://github.com/gradio-app/gradio
gradio-app/gradio
Create UIs for prototyping your machine learning model in 3 minutes - gradio-app/gradio
github.com
Data Science
1. EDA 하는 방법
https://medium.com/analytics-vidhya/how-to-ace-exploratory-data-analysis-d3821011532b
How to ace Exploratory Data Analysis
This article focuses on graphical and numerical ways of performing EDA using Python libraries such as Pandas, Seaborn, Tensorflow, and Lux.
medium.com
2. kubeflow에 대한 introduction
https://medium.com/@bv_subhash/kubeflow-1-0-quick-overview-d515834d3c67
Kubeflow 1.0 — Quick Overview
Kubeflow is an open-source and free machine learning Kubernetes-native platform for developing, orchestrating, deploying and running sca…..
medium.com
3. 유용한 data science 툴들
Some useful Data Science tool I learned from Full Stack Deep Learning
wandb, cudf, pandas-profiling, metaflow, MLFlow, Seldon, Prefect, FEAST
yanwei-liu.medium.com
4. 수식없이 deep learning의 네트워크 6가지의 특징을 간단하게 설명
https://medium.com/cloud-believers/quickly-understand-the-6-types-of-neural-networks-5e5300c45701
Quickly Understand the 6 Types of Neural Networks
The field of artificial intelligence is dominating our life, from chat history to recommendation and from identification to sorting, there…
medium.com
5. AutoML Framework들을 비교한 글
https://medium.com/georgian-impact-blog/choosing-the-best-automl-framework-4f2a90cb1826
Choosing the best AutoML Framework
A head to head comparison of four automatic machine learning frameworks on 87 datasets.
medium.com
6. Tensorflow Lite를 사용한 Object Detection에 대한 코드 예제
https://blog.tensorflow.org/2021/06/easier-object-detection-on-mobile-with-tf-lite.html
Easier object detection on mobile with TensorFlow Lite
Easy object detection on Android using transfer learning, TensorFlow Lite, Model Maker and Task Library. Train a model to detect custom objects using
blog.tensorflow.org
7. scikit-learn의 pipeline을 사용하여 model tuning, optimization을 하는 코드 예제
https://machinelearningmastery.com/modeling-pipeline-optimization-with-scikit-learn/
Modeling Pipeline Optimization With scikit-learn
This tutorial presents two essential concepts in data science and automated learning. One is the machine learning pipeline, and the […]
machinelearningmastery.com
8. facebook에서 만든 다양한 종류의 데이터들에 대한 Augmentation을 수행하는 라이브러리
README 아래쪽에 예제 링크가 존재
https://github.com/facebookresearch/AugLy
facebookresearch/AugLy
A data augmentations library for audio, image, text, and video. - facebookresearch/AugLy
github.com
9. XAI 알고리즘 : LIME 알고리즘에 대한 설명
https://myeonghak.github.io/xai/XAI-LIME(Local-Interpretable-Model-agnostic-Explanation)-알고리즘/
[XAI] LIME(Local Interpretable Model-agnostic Explanation) 알고리즘
blackbox 모델을 지역적으로 근사함으로써 설명 가능성을 제공하는 LIME 알고리즘에 대해 살펴봅니다.
myeonghak.github.io
프로그래밍
1. 시스템 디자인 패턴 5가지에 대한 비교
https://betterprogramming.pub/top-5-distributed-system-design-patterns-ae9482f49128
Top 5 Distributed System Design Patterns
Ace that advanced system design interview
betterprogramming.pub
DL/ML 모델, 논문
1. XBNet : tabular data 도메인에서 neural network가 사용된 tree-based model
boosted gradient descent 사용
https://github.com/tusharsarkar3/XBNet
tusharsarkar3/XBNet
Boosted neural network for tabular data. Contribute to tusharsarkar3/XBNet development by creating an account on GitHub.
github.com
2. Decision Transformer
https://arxiv.org/abs/2106.01345v1
Decision Transformer: Reinforcement Learning via Sequence Modeling
We present a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem. This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances in language modeling such as GPT-x and BER
arxiv.org
3. XCiT
https://arxiv.org/abs/2106.09681v1
XCiT: Cross-Covariance Image Transformers
Following their success in natural language processing, transformers have recently shown much promise for computer vision. The self-attention operation underlying transformers yields global interactions between all tokens ,i.e. words or image patches, and
arxiv.org
4. A survey of Transformers
현재까지 나온 Transformer 모델들에 대해 분류, 정리한 논문
https://arxiv.org/pdf/2106.04554.pdf
'읽을거리' 카테고리의 다른 글
2021-07-04 읽을거리 (0) 2021.07.04 2021-07-02 읽을거리 (0) 2021.07.02 2021-06-30 읽을거리 (0) 2021.06.30 2021-06-27 읽을거리 (0) 2021.06.27 2021-06-25 읽을거리 (0) 2021.06.25